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Abstract
Background The purpose of the study was to evaluate the relationship between prediction errors (PEs) and ocular 
biometric variables in cataract surgery using nine intraocular lens (IOL) formulas with an explainable machine learning 
model.

Methods We retrospectively analyzed the medical records of consecutive patients who underwent standard cataract 
surgery with a Tecnis 1-piece IOL (ZCB00) at a single center. We calculated predicted refraction using the following 
IOL formulas: Barrett Universal II (BUII), Cooke K6, EVO V2.0, Haigis, Hoffer QST, Holladay 1, Kane, SRK/T, and PEARL-DGS. 
We used a LightGBM-based machine learning model to evaluate the explanatory power of ocular biometric variables 
for PEs and assessed the relationship between PEs and ocular biometric variables using Shapley additive explanation 
(SHAP) values.

Results We included 1,430 eyes of 1,430 patients in the analysis. The SRK/T formula exhibited the highest R2 value 
(0.231) in the test set among the machine-learning models. In contrast, the Kane formula exhibited the lowest R2 
value (0.021) in the test set, indicating that the model could explain only 2.1% of the PEs using ocular biometric 
variables. BUII, Cooke K6, EVO V2.0, Haigis, Hoffer QST, Holladay 1, PEARL-DGS formulas exhibited R2 values of 0.046, 
0.025, 0.037, 0.194, 0.106, 0.191, and 0.058, respectively. Lower R2 values for the IOL formulas corresponded to smaller 
SHAP values.

Conclusion The explanatory power of currently used ocular biometric variables for PEs in new-generation formulas 
such as BUII, Cooke K6, EVO V2.0 and Kane is low, implying that these formulas are already optimized. Therefore, the 
introduction of new ocular biometric variables into IOL calculation formulas could potentially reduce PEs, enhancing 
the accuracy of surgical outcomes.
Significance
What was known before Previous studies have evaluated the accuracy of intraocular lens power formulas for 
specific subgroups of patients according to the ocular biometric variables and provided valuable insights into 
the strengths and weaknesses of various formulas. However, the ocular biometric parameters showed significant 
associations with each other.
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Background
The primary goal of modern cataract surgery is to achieve 
optimal vision and predicted refraction. The prediction 
accuracy of postoperative refraction has increased sig-
nificantly in recent years. The development of advanced 
optical technologies and intraocular lens (IOL) power 
calculation formulas have improved refractive outcomes. 
Conventional IOL formulas, such as the SRK/T [1], Hai-
gis [2], and Barrett Universal II (BUII) [3] formulas, are 
based on theoretical lens calculations. More complex 
optics and effective lens position calculation for IOL 
power calculation have been incorporated in recently 
developed formulas, such as EVO 2.0 and Kane formulas 
[4]. 

Several studies have attempted to develop optimal IOL 
formulas for specific eye groups by classifying the eyes 
according to the axial length (AL) and comparing the 
refractive outcomes among the subgroups [5–9]. Other 
studies have revealed remarkable variations among the 
refractive outcomes of different subgroups according to 
the anterior chamber depth (ACD, measured from cor-
neal epithelium to lens) [10, 11]. New-generation formu-
las demonstrate higher overall accuracy by incorporating 
more ocular biometric variables [12, 13]. Despite this 
advancement, there remains a need to further enhance 
IOL formulas for improved precision.

Ocular biometric variables show significant correla-
tions with each other [14]. Thus, multiple ocular bio-
metric factors affect the refractive outcomes of cataract 
surgery. Multivariable analysis must be conducted con-
sidering these parameters simultaneously to calculate the 
prediction errors (PEs), rather than attributing the PEs to 
individual biometric parameters.

In this study, we used a machine learning model to pre-
dict the refractive outcomes of nine IOL power formulas 
using ocular biometric variables to investigate the overall 
influence of ocular biometric variables on PE and com-
pare the prediction outcomes of the formulas.

Methods
This study was approved by the Institutional Review 
Board of the Seoul National University Hospital (SNUH; 
IRB No. 2112-132-1284) and adhered to the principles 
of the Declaration of Helsinki. The Institutional Review 
Board waived the requirement for obtaining written 
informed consent owing to the retrospective study design 
and anonymization of patient information.

Study population
We retrospectively reviewed the medical records of 
patients who had undergone standard cataract surgery 
between August 1, 2018, and December 31, 2021. The 
inclusion criteria were as follows: (1) operation using 
Tecnis ZCB00 (Johnson & Johnson Vision Care, Inc., 
Santa Ana, CA, USA) IOL insertion in the bag, and (2) 
age of at least 19 years old. The exclusion criteria were as 
follows: (1) history of previous vitrectomy, corneal refrac-
tive surgery, or other corneal operation; (2) incidence of 
severe intraoperative or postoperative complication, such 
as zonular dialysis, posterior capsular rupture, or the use 
of capsular tension ring or iris retractor; (3) combined 
operation for the correction of glaucoma, pterygium, or 
vitrectomy; (4) cataract operation with large corneal or 
limbal incision or limbal relaxing incision; (5) absence 
of postoperative manifest refraction data; (6) postopera-
tive best-corrected visual acuity (BCVA) of worse than 
< 20/40; (7) failure of ocular biometric examination; (8) 
inability to calculate IOL power owing to extreme refrac-
tive target. The first eye that underwent surgery was 
included if both eyes were eligible for inclusion.

Preoperative ophthalmic evaluation
In accordance with the SNUH preoperative cataract 
examination protocol, all patients underwent a compre-
hensive ophthalmologic examination, which included 
BCVA assessment, slit-lamp biomicroscopy, dilated fun-
duscopic examination, ocular biometric measurement 
(IOLMaster 700; Carl Zeiss, Germany), autokeratometry 
(KR-7100; Topcon, Japan), anterior segment topographic 
measurements (Orbscan II; Bausch and Lomb, USA), 
specular microscopy (NSP-9900; Konan Medical, Japan), 
optical coherence tomography (Heidelberg Spectralis; 
Heidelberg Engineering, Germany), and ultra-widefield 
fundus photography (Optos California; Optos, USA), 
preoperatively.

Surgical procedures
All cataract surgeries were performed by the experienced 
surgeons at SNUH, as described below. The procedures 
were as follows: 2.2-mm or 2.75-mm small, clear corneal 
incision, continuous curvilinear capsulorrhexis, phaco-
emulsification of the crystalline lens, and implantation 
of the IOL in the capsular bag. The corneal incision was 
made at a temporal or superior location at the discretion 
of the surgeon.

What this study adds Compared with those of formally generated formulas, recent intraocular lens formulas yielded 
relatively stable outcomes across a wide range of ocular biometric variables. Ocular biometric variables have no 
significant effect on postoperative prediction errors.

Keywords LightGBM, Explainable artificial intelligence, Intraocular lens, Prediction error
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Prediction of postoperative refractive errors
We predicted the postoperative refractive errors using 
nine IOL power calculation formulas: Barrett Universal II 
(BUII), Cooke K6, EVO V2.0, Haigis, Hoffer QST, Holla-
day 1, Kane, SRK/T, and PEARL-DGS. We used the man-
ufacturers’ and IOL calculators’ recommended constants 
available from online  (   h t  t p s  : / / w  w w  . i o l c o n . o r g / l e n s e s T a b l 
e . p h p     ; accessed April 5, 2024) for each IOL formula. The 
A constant of the IOL used was 119.3. The Haigis con-
stants for a0, a1, and a2 were − 1.302, 0.210, and 0.251, 
respectively. The SRK/T formula requires the A con-
stant for the IOL, corneal power, and AL. An investigator 
(RO) manually entered the data into online calculators 
for the BUII, Cooke K6, EVO V2.0, Hoffer-QST, Kane, 
and PEARL-DGS formulas  (   h t  t p s  : / / c  a l  c . a p a c r s . o r g / b a r r 
e t t _ u n i v e r s a l 2 1 0 5 /     ,  h t t p s : / / c o o k e f o r m u l a . c o m /     , https:/ /
www.ev oiolcal cula tor.com/calculator.aspx, https://hof-
ferqst.com/, https://www.iolformula.com/, and https://
iolsolver.com/main, respectively). Another investigator 
(CHY) evaluated the results to determine the plausibility.

Postoperative refractive outcome analysis
All patients underwent routine postoperative exami-
nations. We assessed the manifest refraction 1 month 
postoperatively. We adhered to the previously proposed 
protocols for the postoperative refractive outcome analy-
sis [15, 16], and defined PE as the difference between the 
spherical equivalent of the postoperative manifest refrac-
tion and formula PE using the IOL power implanted. To 
eliminate systematic error, we zeroed out the mean PE by 
adjusting the PE for each eye up or down by an amount 
equal to the mean PE. Negative and positive PEs indi-
cate myopic and hyperopic outcomes, respectively [16]. 
We defined the absolute prediction error (APE) as the 
absolute value of PE and calculated the mean value of 
PE (ME), median of value APE (MedAE), mean value of 
APE (MAE), and percentages of eyes within ± 0.25 diop-
ter (D), ± 0.50 D, ± 0.75 D, and ± 1.00 D from the target 
refraction.

Development of machine learning models to estimate PEs 
after cataract surgery
We used LightGBM, which was developed by Microsoft 
and Peking University, to evaluate the relative influence 
of ocular biometric parameters on the PEs of the nine 
IOL formulas [17]. LightGBM is one of the most popu-
lar machine learning models owing to its superior accu-
racy, computational speed, and memory consumption 
compared with those of other machine-learning models 
[17]. LightGBM was trained using the lightgbm library 
version 3.3.2, with the following hyperparameters: n_
estimators = 10,000, learning_rate = 0.01, max_depth = 8, 
and otherwise, with the default value. We subsequently 
divided the dataset into development and test sets at an 

8:2 ratio and used five-fold cross-validation in the devel-
opment process. We divided the development set into 
training and validation sets of 80% and 20%, respectively, 
for each fold. As a result, the training, validation, and 
test sets were exclusively constructed at the patient level. 
We fitted and validated the LightGBM model using the 
training and validation sets and estimated the PE using 
the following variables: age, gender, and ocular biometric 
measurements (including AL, ACD, mean keratometry 
[K], LT, central corneal thickness [CCT], and horizontal 
corneal diameter [CD]). We developed five models for 
the test set to estimate PE for each IOL formula. The pre-
dicted values of the five models were averaged for each 
test sample to determine the final PE using the formula.

Model performance evaluation and SHAP
We calculated the R squared value (R2, coefficient of 
determination), defined as the proportion of the varia-
tion in the dependent variable that can be predicted from 
the independent variable 1 - RSS/TSS (where RSS is the 
sum of squares of residuals, and TSS is the total sum of 
squares), to measure the predictive performance of the 
models. This value is a measure of how well observed 
outcomes are replicated by the model based on the pro-
portion of the total variation of outcomes explained by 
the model. A value of 1 indicates that the model predicts 
100% of the relationship, whereas a value of 0.5 indicates 
that the model predicts 50% of the relationship [18]. We 
used the bootstrap method to calculate the 95% confi-
dence intervals (CIs) of R2. From the test set, the same 
amount of data as the test set was resampled, with allow-
ance for repetitive samples for the MAE and R2 evalua-
tion. This process was repeated 10,000 times to calculate 
CIs.

We used the SHAP method, a game-theoretic tech-
nique used to explain the output of machine learning 
models, to interpret the model [19]. SHAP values yield 
quantified contributions, thereby intuitively demonstrat-
ing the effect of each feature in terms of the shift of the 
model output from the base value. SHAP values quantify 
the effect of individual parameters on the model output 
and estimated PE. Further details on the SHAP method 
have been described in the article by Lundberg and Lee 
[19]. We calculated the SHAP value by determining 
the average change relative to the presence or absence 
of individual features after constructing a model with 
several features. The SHAP value of each feature is an 
indicator of its strength in terms of positive or negative 
prediction of the model. A larger absolute SHAP value 
indicates a greater effect of the feature on the prediction 
of the model. We calculated the SHAP values to deter-
mine the contribution of each variable and their correla-
tion with the PEs of the formulas. Features with positive 
signs indicate a positive effect on PEs, whereas those with 

https://www.iolcon.org/lensesTable.php
https://www.iolcon.org/lensesTable.php
https://calc.apacrs.org/barrett_universal2105/
https://calc.apacrs.org/barrett_universal2105/
https://cookeformula.com/
https://www.evoiolcalculator.com/calculator.aspx
https://www.evoiolcalculator.com/calculator.aspx
https://hofferqst.com/
https://hofferqst.com/
https://www.iolformula.com/
https://iolsolver.com/main
https://iolsolver.com/main
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negative signs indicate a negative effect on PEs. The par-
tial dependence plot (PDP) presents the marginal effect 
of features on the predicted outcome of a machine learn-
ing model.

Development process and analysis
We used Python ver. 3.7.11 (https://www.python.org), 
scikit-learn library ver. 1.0.2, and shap library ver. 0.41.0 
to develop and analyze the performance of the model. An 
investigator (RO) performed all developments and infer-
ences on a private server equipped with a central pro-
cessing unit (CPU) with 32 GB of RAM and an NVIDIA 
GeForce GTX 3090 with a 24 GB graphics processing 
unit (GPU; Nvidia). We used scipy library ver. 1.7.3 and 
scikit_posthocs library ver. 0.7.0 for statistical analysis. 
In addition, we used Student’s t-test, Friedman test, post 
hoc pairwise Wilcoxon test with Holm’s adjustment, 
Cochrane Q test, and post hoc pairwise Dunn’s test with 
Holm’s adjustment for comparisons.

Results
Among the 3,188 eyes of 2,269 patients with cataracts, 
1,430 eyes of 1,430 patients (mean age: 69.71 ± 9.14 years, 
898 (62.8%) females) were included in this study. Table 1 
summarizes the demographic and clinical characteristics 
of the patients. Table  2 summarizes the predictive per-
formance of the IOL power formulas for postoperative 
refractive outcomes after zeroing adjustment. The differ-
ence in the APE values among the formulas was statisti-
cally significant (P < 0.05, Friedman test). Supplementary 
Table 1 presents the results of the pairwise comparison. 
The Cooke K6 formula exhibited the lowest MAE (0.325) 
and BUII formula exhibited the lowest MedAE (0.254) 
values, whereas the SRK/T and Holladay 1 formulas 
exhibited the highest MAE (0.378) and MedAE (0.307) 
values, respectively. However, no statistical differences 
were observed between the Kane, BUII, and Cooke K6 
formulas in terms of the MAE value. The Cochrane Q 
test revealed significant differences between the formulas 
in terms of the percentages of eyes within the given error 
range (P < 0.001 for all ranges). The Kane formula exhib-
ited the highest percentage of eyes in the given error 
ranges. Supplementary Table 2 presents the statistical 
results for the percentage of eyes within the given error 
range using post hoc Dunn’s test with Holm’s adjustment.

LightGBM models were constructed to estimate the 
PEs for each IOL formula. Table  3 summarizes the R2 

Table 1 Demographic and clinical characteristics of subjects
Variables Value
Number of subjects, Eyes/Patients 1430 / 1430
Age, years 69.71 ± 9.14
Gender, Female 898 (62.8%)
Laterality, Right 782 (54.7%)
AL, mm 23.84 ± 1.25
ACD, mm 3.10 ± 0.43
Flat K, D 43.83 ± 1.47
Steep K, D 44.66 ± 1.52
Corneal Astigmatism, D 0.83 ± 0.59
LT, mm 4.49 ± 0.46
CCT, µm 540.46 ± 32.95
CD, mm 11.72 ± 0.42
IOL Power, D 20.51 ± 2.73
Postoperative Refraction (S.E.), D -0.47 ± 1.07
ACD, anterior chamber depth measured from corneal epithelium to anterior 
lens surface; AL, axial length; CCT, central corneal thickness; CD, horizontal 
corneal diameter; D, diopter; IOL, intraocular lens; K, Keratometry; LT, lens 
thickness; S.E, spherical equivalent

Table 2 Prediction errors for each formula
ME SD MAE MedAE ± 0.25 D ± 0.50 D ± 0.75 D ± 1.00 D

BUII 0.000 0.432 0.328 0.254 49.23% 78.04% 92.73% 97.27%
Cooke K6 0.000 0.430 0.325 0.259 48.60% 80.00% 92.45% 97.27%
EVO V2.0 0.000 0.438 0.333 0.268 46.78% 78.53% 91.96% 97.13%
Haigis 0.000 0.465 0.357 0.289 45.24% 75.45% 89.93% 96.64%
Hoffer QST 0.000 0.456 0.350 0.286 44.97% 76.29% 91.19% 96.71%
Holladay 1 0.000 0.479 0.369 0.307 42.38% 73.22% 90.00% 96.50%
Kane 0.000 0.431 0.326 0.255 49.44% 79.02% 92.73% 97.62%
PEARL-DGS 0.000 0.434 0.331 0.264 47.41% 78.32% 92.10% 97.27%
SRK/T 0.000 0.494 0.378 0.305 41.61% 72.59% 88.95% 95.45%
D, diopter; ME, mean error; MAE, mean absolute error, MedAE, median absolute error; SD, standard deviation

Table 3 R2 values and their confidence intervals of the models 
estimating prediction errors in the test set for each formula

R2 95% CI of R2

BUII 0.046 [-0.019, 0.095]
Cooke K6 0.025 [-0.009, 0.055]
EVO V2.0 0.037 [-0.006, 0.084]
Haigis 0.194 [0.113, 0.249]
Hoffer QST 0.106 [0.042, 0.176]
Holladay 1 0.191 [0.109, 0.266]
Kane 0.021 [-0.013, 0.051]
PEARL-DGS 0.058 [0.015, 0.093]
SRK/T 0.231 [0.132, 0.297]
CI, confidence interval

https://www.python.org
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values of the ensemble models for the estimation of 
PEs using the IOL formulas in the test set. The R2 val-
ues ranged from 0.021 to 0.231. Notably, the SRK/T and 
Kane formulas exhibited the highest and lowest R2 val-
ues in the test set, respectively (R2 value: 0.231 and 0.021, 

respectively). For BUII, Cooke K6, EVO V2.0, and Kane 
formula, the R2 values for the models were not signifi-
cantly different from zero.

The SHAP values are described in Fig.  1. The colored 
dots represent the SHAP value of each eye. The x-axis 

Fig. 1 Shapley Additive Explanations (SHAP) values and mean absolute SHAP values for the IOL formulas. ACD, anterior chamber depth measured from 
corneal epithelium to lens; AL, axial length; BUII, Barrett Universal II; CCT, central corneal thickness; CD, horizontal corneal diameter; IOL, intraocular lens; 
K, Keratometry; LT, lens thickness. The Shapley additive explanation (SHAP) values and mean absolute SHAP values for each intraocular lens (IOL) formula. 
The SHAP value for each participant is visually presented as a colored dot. The x-axis represents the SHAP values, wherein negative values correspond to 
the eyes contributing to a negative prediction error (PE) and positive values correspond to a positive PE. Colors ranging from blue to red denote the value 
of the ocular biometric variables, with red dots representing eyes with greater values and blue dots representing eyes with smaller values. The average 
absolute SHAP values for each variable indicate the contribution of the variable variation within the formula. The height of the horizontal bar indicates the 
contribution of the variable, with larger bars signifying higher contributions and smaller bars indicating lower contributions
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represents the SHAP values, wherein the negative values 
correspond to the eyes contributing to a negative PE and 
positive values correspond to the eyes contributing to a 
positive PE. SHAP values of < 0.0 and > 0.0 indicate myo-
pic and hyperopic shifts, respectively. The colors ranging 
from blue to red represent the values of ocular biometric 
variables. The red dots represent eyes with greater values, 
whereas the blue dots represent the eyes with smaller val-
ues. The average absolute SHAP values for each variable 
indicate the contribution of the variation in the variable 
within the formula. The variable at the top represents the 
most important variable in the estimation of the PE for 
each formula. The importance of the variables decreases 
in descending order.

A lower R2 value of the IOL formula indicated a 
smaller absolute SHAP value. Figure 2 presents the PDPs 
between the SHAP values and ocular biometric variables. 
The x- and y-axes represent the value of the variable and 
the SHAP value, respectively. The SHAP values in the 
figures represent the marginal impact of the variables on 
the PEs based on the presence or absence of other vari-
ables. A longer AL was independently associated with 
more myopic PE in the SRK/T formula. The remaining 
formulas showed irregular trends. A steeper K results 
in myopic PE in the SRK/T formula, whereas it leads to 
hyperopic PEs in the Haigis formula. All variables exhib-
ited a nearly flat curve in the PDP plots for the Kane 

formula, indicating that the performance efficiency of the 
formula was less affected by these variables.

Discussion
We developed machine learning models to predict PEs in 
cataract surgery in this study. The R2 values were gener-
ally low, ranging from 0.021 to 0.232. The SRK/T formula 
exhibited the highest R2 value for estimating PE, whereas 
the BUII, Cooke K6, EVO V2.0, and Kane formula exhib-
ited the lowest R2 value, which did not statistically differ 
from zero. These findings indicate that ocular biometric 
parameters, including AL, ACD, K, LT, CCT, and CD, 
have significant effects on the PE of the SRK/T formula. 
However, they had no significant effect on the PE of the 
BUII, Cooke K6, EVO V2.0, and Kane formula. To the 
best of our knowledge, this is the first study to use ocu-
lar biometric variables to estimate PEs using machine 
learning.

Previous studies have evaluated the accuracy of IOL 
power formulas for specific subgroups of patients accord-
ing to the ocular biometric variables [6, 7, 20–28] and 
provided valuable insights into the strengths and weak-
nesses of various formulas. The Kane formula exhibits 
a significantly lower MAE value and higher accuracy in 
eyes with long AL. Moreover, it outperforms other for-
mulas, including the Hill-RBF 2.0 and BUII formulas, in 
eyes with short AL [12, 29]. Several studies have used 
other ocular biometric parameters in combination with 

Fig. 2 Partial dependence plots (PDPs) between the Shapley Additive Explanations (SHAP) values and ocular biometric variables. ACD, anterior chamber 
depth measured from corneal epithelium to lens; AL, axial length; BUII, Barrett Universal II; CCT, central corneal thickness; CD, horizontal corneal diameter; 
IOL, intraocular lens; K, Keratometry; LT, lens thickness. The partial dependence plots (PDPs) between SHAP values and ocular biometric variables present 
the marginal impact of each variable on each intraocular lens (IOL) formula. The x- and y-axes represent the value of the variable and the SHAP value, 
respectively. The blue dots represent the eyes. SHAP values of < 0.0 and > 0.0 result in myopic and hyperopic shifts, respectively
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AL. Kim et al. categorized eyes based on the AL, K, and 
ACD values and compared the accuracies of the Haigis, 
Hoffer Q, Holladay 1, SRK/T, and BUII formulas in each 
subgroup [14]. Hipólito-Fernandes et al. revealed that the 
Kane, PEARL-DGS, and EVO V.2.0 formulas yielded reli-
able and stable results in subgroups with extreme combi-
nations of ACD and LT [30]. Although previous studies 
have provided valuable insights into ocular biometric 
combinations, an optimal formula for each subgroup of 
eyes remains to be established.

The ocular biometric parameters AL, K, ACD, LT, 
WTW, and CCT showed significant associations with 
each other. Kim et al. conducted a large-scale ocular 
biometric analysis and revealed that AL was positively 
correlated with ACD, WTW, and CCT and negatively 
correlated with K and LT [14]. Another larger study 
revealed similar tendencies among AL, ACD, K, and LT 
[31]. Furthermore, these parameters also show associa-
tions with age [14, 31–34]. Thus, subgroup analysis using 
individual variables introduced significant confounding 
factors, given the inherent correlations among the ocular 
biometric parameters. The effects of these confounding 
factors cannot be adequately addressed in studies using 
such designs. Multivariate analysis must be conducted to 
predict PEs and identify the best-fitting formula owing to 
the interdependence of these variables.

We incorporated nine ocular biometric parameters to 
estimate PEs using machine learning models. Traditional 
regression models consider all relationships as linear, 
thereby limiting their ability to evaluate complex inter-
actions between variables. In contrast, machine learn-
ing models incorporate nonlinear relationships, thereby 
enhancing their predictive capabilities. However, the 
mechanisms underlying machine learning models are 
challenging owing to their complex structures. The SHAP 
method addresses this limitation by aiding in the inter-
pretation of the outcomes of machine learning models. 
Moreover, it enables the exploration of the importance 
and dependence of variables.

The machine learning models produced R² scores 
below 30% for all formulas, suggesting that at least 70% of 
the variability cannot be explained by the ocular biomet-
ric variables included in this study. The machine learning 
model exhibited the lowest R2 score of 0.021 for the Kane 
formula. The machine learning models for BUII, Cooke 
K6, EVO V2.0, and Kane formula failed to introduce sig-
nificant performance in estimating the variability in the 
predicted PE, indicating their stability across ocular bio-
metric parameter ranges. In contrast, the R2 scores of 
the third-generation formulas, SRK/T, Haigis, and Hol-
laday 1, were relatively high, indicating a stronger asso-
ciation between the predicted PEs and ocular biometric 
variables.

The impact of each variable on the prediction of PE can 
be discerned (Fig.  1). Notably, the absolute SHAP val-
ues of the BUII, Cooke K6, EVO V2.0, and Kane formu-
las were lower than those of the Haigis, Holladay 1, and 
SRK/T formulas. The PDP plots illustrate the adjusted 
influence of each variable while considering the influ-
ence of the other variables. Thus, these graphs depict the 
response of different formulas to changes in ocular biom-
etry. An increase in AL leads to the SRK/T formula pre-
dicting a negative PE, whereas smaller K, larger ACD, and 
LT values lead to the SRK/T formula predicting greater 
PEs. In contrast, LT and K, rather than AL, exhibit sig-
nificant effects on the Haigis formula.

The findings of our study highlight different aspects of 
the objectives and designs of numerous previous studies 
that attempted to differentiate subgroups based on the 
range of ocular biometric parameters and compared vari-
ous formulas within these subgroups to identify the best 
formula in terms of PE or APE. However, the outcomes 
varied among research groups. Moreover, the differences 
often failed to demonstrate statistical differences in sub-
group analyses. The findings of our study can be used to 
understand these divergent findings. New-generation 
formulas, such as the BUII, Cooke K6, EVO V2.0, and 
Kane, consistently yielded stable results across a wide 
range of parameters. In contrast, the SRK/T, Holladay 1, 
and Haigis formulas exhibited a less consistent perfor-
mance in the subgroup analysis, which may be attributed 
to the PEs being explainable using known ocular biomet-
ric variables.

Our study demonstrated that the new-generation for-
mulas are generally stable across a wide range of known 
ocular biometric parameters. We suggest that further 
research should focus not on the previous known ocu-
lar biometric parameters but on the new variables which 
can have affect on the PEs, such as the lens vault, angle 
kappa, and accuracy of the ocular biometric measure-
ments [23, 35, 36]. New variables using the mathematical 
combination of the known variables, such as AL/corneal 
radius [37], might have a role in the change of the PEs.

This study has some limitations. First, our sample size 
was relatively small for the machine learning model. 
However, a sample size exceeding 1000 is sufficient to 
demonstrate this tendency. Further large-scale studies 
could reveal a higher proportion of potentially predict-
able variance. Second, we only included a single type of 
IOL in this study; thus, the findings of our study must 
be validated before being applied to other IOLs. Lastly, 
the machine learning model for each formula could be 
overfitted to our dataset, which could have resulted in 
bias. Moreover, comparisons have been made between 
these overfitted models, but not with an ideal prediction 
algorithm.
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In conclusion, machine learning algorithms can pre-
dict a portion of PEs; however, they have limitations in 
explaining the variability of PEs using ocular biomet-
ric parameters. Newer IOL formulas, such as the BUII, 
Cooke K6, EVO V2.0, and Kane formulas, demonstrated 
relatively stable outcomes across a wide range of ocular 
biometric variables, indicating that these formulas are 
already optimized by ocular biometric variables used in 
this study. Introducing additional ocular biometric vari-
ables beyond those currently used in the IOL calcula-
tion formula may improve the accuracy of future surgical 
results.
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